2021年7月19日 · 具有热能储存 (TES,以下简称储热) 的太阳能光热发电(concentrated solar power, CSP)技术是未来可再生能源系统中最高具应用前景的发电技术之一,其可高效利用资源丰富但具间歇性的太阳能,为人们提供稳定可调度且低成本的电力。
2023年4月8日 · 通过反射镜、聚光镜等聚热器将采集的太阳辐射热能汇聚到集热装置,加热装置内的导热油、熔融盐等传热介质,传热介质经过换热装置将水加热到高温高压蒸汽,进而驱动汽轮机带动发电机发电。
澳大利亚国立大学 提出一种储存太阳 能的方式叫做"氨闭合回路热化学过程",在这个系统里,氨吸热太阳能分解成氢与氮,储存 太阳能,然后在一定条件下进行放热反应,重新生成氨,同时放出热量。
2019年4月4日 · 邓涛教授团队通过使用磁力驱动的可移动网状光热转换器来吸收太阳能,在高温熔融盐相变材料中实现了快速太阳能热储存。 与传统的固定式储能系统相比,这种移动式系统不仅使储能速率加倍,实现了均匀的温度分布,保留了100%潜热储存容量,同时也使得大
2021年2月16日 · 本文介绍了三种太阳能驱动的短期低温储热系统-水箱储热,相变材料储热和热化学储热。 本研究的目的是对三种储热系统进行综合比较,并提出未来的研究方向,为研究者提供指导。
2021年9月13日 · 太阳能热化学反应循环制氢技术就是利用太阳能光热发电系统提供的高温环境与热化学反应装置联合,采用金属氧化物作中间物,输入系统的原料是水,产物是氢和氧,不产生CO和CO₂,效率可以达到30%,是很有潜力的制氢技术。
首先, 通过"两步法"制备一种导热油基Co@NC中温磁性纳米流体, 并利用其优秀的光学吸收性能, 在大功率模拟太阳光照射下获得较高温度的流体; 然后, 基于磁分离技术将Co@NC纳米颗粒与导热油基液分离, 获得具有较高温度的纯基液; 再经过换热器热交换过程得到
2024年10月11日 · 根据国际能源署太阳能供热制冷委员会 (IEASHC TCP) 的统计数据,截至 2022 年底,全方位球范围内太阳能热利用系统的运行量为542GW ( 约合集热器面积 7.74 亿m² ),年供能量约为 442TWh,可减少1.53亿t二氧化碳排放量。 2022年全方位球可再生能源的运行量与供能量如图 1所示。 2004—2022 年全方位球太阳能热利用系统的年新增集热器面积与年增长率如图 2所示
2019年4月9日 · 近日,上海交通大学邓涛教授、陶鹏副研究员等在Energy & Environmental Science 杂志报道了一种巧妙、简单的策略,可以显著加速熔融盐太阳能热储存系统的储能速率,同时彻底面不影响储存容量。 在储能系统中,他们 沿太阳光照射路径在熔融盐中设置了一个磁力驱动的可移动网状光热转换器来吸收太阳能,可以在不影响总容量的前提下将太阳能热储存系
2019年4月8日 · 邓涛教授团队通过使用磁力驱动的可移动网状光热转换器来吸收太阳能,在高温熔融盐相变材料中实现了快速太阳能热储存。 与传统的固定式储能系统相比,这种移动式系统不仅使储能速率加倍,实现了均匀的温度分布,保留了100%潜热储存容量,同时也使得大